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Introduction

Most useful optimisations are high-level
Bit manipulation is one of the most effective low-level
optimisations
Potential order-of-magnitude improvement in speed and
size
Can simplify code
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Truth Table

Truth table for ! (not), && (and), || (or) and ^ (xor):

A B !A A && B A || B A ^B
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Bit-wise operations do the same, but operate on each bit
separately
If A is 1100 and B is 1001, then:

~A = 11110011 (assuming A is one byte)
A & B = 1000
A | B = 1101
A ^B = 0101
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Shift Operators

Two more operators: A « B and A » B

Shift all bits in A and shifts them B positions to the left («) /
right (»)
Non-negatives are padded with zeros
Equivalent to multiplyication («) / integer division (») by 2B

Most common use is 1 « X, which is a number with only
bit X set
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Bit-Sets

We can use an integer to represent a subset of a set of up
to 32 values
A 1 bit represents a member in the subset, a 0 bit a
member that is absent
We have the following simple operations on subsets:

Union A | B Intersection A & B
Subtraction A & ~B Negation ALL_BITS ^A
Set bit A |= 1 « bit Clear bit A &= ~(1 « bit)
Test bit (A & 1 « bit) != 0
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All Subsets

Every N-bit value represents some subset of an N-element
set
Easy to iterate over all subsets
The bit representation of a subset is less than that of the
set
i = (i - 1) & A to iterate to next subset of the subset
A
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Extracting Bits

Value of lowest bit: x & ~(x - 1)

Index of highest/lowest bit: looping requires only two
iterations on average
GCC built-in functions:

__builtin_ctz (count trailing zeros)
__builtin_clz (count leading zeros)
Undefined for zero

Check if number is a power of 2: clear lowest bit and check
if result is 0
__builtin_popcount counts number of bits set
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Gotchas

Very easy to make mistakes with bits
A « B and A » B use only the last 5 bits of B

Shifting by 32 bits does nothing!

& and | operators have lower precedence than comparison
operators
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Bitset

STL offers a conveniant data structure, bitset<N> in
header bitset
Optimised for space: each element occupies only one bit
Advantages:

Easier than array of integers when more than 64 bits
required
Some handy methods

Disadvantages:
Need to know size in advance: template parameter N
No iterators: ++ and --

Operators: &, |, ^, «, » and their &= equivalents
Operators: ~, ==, != and [] to access a bit
Methods: set, flip, any, none, to_ulong
Documentation:
http://www.sgi.com/tech/stl/bitset.html
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Example

#include < b i t s e t >
#include <iostream >
using namespace std ;
i n t main ( ) {

b i t s e t <8> a(100 u l ) , b ( s t r i n g ( " 1001110 " ) ) ;
cout << a << " " << b << endl ;
cout << ( a&b ) << " " << ( a | b ) << " " << ( a^b )

<< endl ;
a [ 0 ] = 1 ; cout << a << endl ;

}

produces:

01100100 01001110
01000100 01101110 00101010
01100101 Marco Gallotta Juggling Bits
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Bit-sets and bit count: http://www.topcoder.com/
stat?c=problem_statement&pm=6725&rd=10100

All subsets: http://www.topcoder.com/stat?c=
problem_statement&pm=6095&rd=9917

Bit-sets with trick iteration:
http://www.topcoder.com/stat?c=problem_
statement&pm=6475&rd=9988

No adjacent bits: http://www.topcoder.com/stat?
c=problem_statement&pm=6400&rd=10000
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