Juggling Bits

Marco Gallotta

28 February, 2009

Marco Gallotta Juggling Bits

Introduction

Introduction

@ Most useful optimisations are high-level

@ Bit manipulation is one of the most effective low-level
optimisations

@ Potential order-of-magnitude improvement in speed and
size

@ Can simplify code

=)
/

Marco Gallotta Juggling Bits

Introduction

Outline

e Introduction

e Sets

© Bit Tricks

© Bitset

© sample Problems

Marco Gallotta Juggling Bits

Introduction

Truth Table

@ Truth table for ! (not), & (and), | | (or) and ~ (xor):
A|B|!A|A & B|A || B|A "B

0/0] 1 0 0 0

o1 1 0 1 1

1100 0 1 1

1110 1 1 0

=)
/

Marco Gallotta Juggling Bits

Introduction

Truth Table

Truth table for ! (not), «& (and), | | (or) and ~ (xor):

°
A|B|!'A|A&& B|A || B|A "B
0|0 1 0 0 0
0|1 1 0 1 1
110 0 0 1 1
1110 1 1 0
@ Bit-wise operations do the same, but operate on each bit
separately

@ If Ais 1100 and B is 1001, then:
e ~A=11110011 (assuming A is one byte)

e A & B=1000 o
e A | B=1101 ;
e A ~B=0101

Marco Gallotta Juggling Bits

Introduction

Shift Operators

@ Two more operators: A « BandA » B

@ Shift all bits in A and shifts them B positions to the left («) /
right (»)

@ Non-negatives are padded with zeros

@ Equivalent to multiplyication («) / integer division (») by 28

@ Most common useis 1 « X, which is a number with only
bit X set

=)
/

Marco Gallotta Juggling Bits

Bit-Sets

@ We can use an integer to represent a subset of a set of up
to 32 values

@ A 1 bit represents a member in the subset, a 0 bit a
member that is absent

o J
/

Marco Gallotta Juggling Bits

Bit-Sets

@ We can use an integer to represent a subset of a set of up
to 32 values

@ A 1 bit represents a member in the subset, a 0 bit a
member that is absent

@ We have the following simple operations on subsets:

Union A | B Intersection A & B
Subtraction A & ~B Negation ALL_BITS "A
Set bit A |= 1 « bit | Clear bit A &= ~(1 « bit)
Test bit (A & 1 « bit) !'= 0
[y=]
/

Marco Gallotta Juggling Bits

All Subsets

@ Every N-bit value represents some subset of an N-element
set

@ Easy to iterate over all subsets

@ The bit representation of a subset is less than that of the
set

=)
/

Marco Gallotta Juggling Bits

All Subsets

@ Every N-bit value represents some subset of an N-element
set

@ Easy to iterate over all subsets
@ The bit representation of a subset is less than that of the
set

@i = (i - 1) & Atoiterate to next subset of the subset

i
A

=)
/

Marco Gallotta Juggling Bits

Bit Tricks

Extracting Bits

@ Value of lowest bit: x & ~(x - 1)

@ Index of highest/lowest bit: looping requires only two
iterations on average

=)
/

Marco Gallotta Juggling Bits

Bit Tricks

Extracting Bits

@ Value of lowest bit: x &« ~(x - 1)

@ Index of highest/lowest bit: looping requires only two
iterations on average

@ GCC built-in functions:

@ __builtin_ctz (count trailing zeros)
@ _ _builtin_clz (count leading zeros)
e Undefined for zero

=)
/

Marco Gallotta Juggling Bits

Bit Tricks

Extracting Bits

@ Value of lowest bit: x & ~(x - 1)

@ Index of highest/lowest bit: looping requires only two
iterations on average
@ GCC built-in functions:
@ __builtin_ctz (count trailing zeros)
@ _ _builtin_clz (count leading zeros)
e Undefined for zero
@ Check if number is a power of 2: clear lowest bit and check
if resultis 0

@ _ builtin_popcount counts number of bits set o
[J

’

Marco Gallotta Juggling Bits

Bit Tricks

@ Very easy to make mistakes with bits
@ A « BandA » B use only the last 5 bits of B
e Shifting by 32 bits does nothing!

@ & and | operators have lower precedence than comparison
operators

=)
/

Marco Gallotta Juggling Bits

Bitset

Bitset

@ STL offers a conveniant data structure, bitset<N> in
header bitset
@ Optimised for space: each element occupies only one bit

=)
/

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Bitset

Bitset

@ STL offers a conveniant data structure, bitset<N> in
header bitset
@ Optimised for space: each element occupies only one bit
@ Advantages:
e Easier than array of integers when more than 64 bits
required
e Some handy methods

=)
/

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Bitset

Bitset

@ STL offers a conveniant data structure, bitset<N> in
header bitset
@ Optimised for space: each element occupies only one bit
@ Advantages:
e Easier than array of integers when more than 64 bits
required
e Some handy methods
@ Disadvantages:
o Need to know size in advance: template parameter N
o No iterators: ++ and —-

=)
/

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Bitset

Bitset

@ STL offers a conveniant data structure, bitset<N> in
header bitset
@ Optimised for space: each element occupies only one bit
@ Advantages:
e Easier than array of integers when more than 64 bits
required
e Some handy methods
@ Disadvantages:
o Need to know size in advance: template parameter N
o No iterators: ++ and —-
@ Operators: s, |, *, «, » and their &= equivalents
@ Operators: ~, ==, !=and [] to access a bit
@ Methods: set, flip, any, none, to_ulong o
@ Documentation:)

http://www.sgi.com/tech/stl/bitset.html

Bitset

#include <bitset>
#include <iostreams>
using namespace std;
int main() {
bitset <8> a(100ul), b(string("1001110"));

cout << a << "" << b << endl;
cout << (a&b) << " " << (al|b) << "." << (a’b)
<< endl;

a[0] = 1; cout << a << endl;
}
produces:
01100100 01001110 <
01000100 01101110 00101010 /

Marco Gallotta Juggling Bits

Sample Problems

Sample Problems

@ Bit-sets and bit count: http://www.topcoder.com/
stat?c=problem_statement&pm=6725&rd=10100

@ All subsets: http://www.topcoder.com/stat?c=
problem statement&pm=6095&rd=9917

@ Bit-sets with trick iteration:
http://www.topcoder.com/stat?c=problem_
statement&pm=64756rd=9988

@ No adjacent bits: http://www.topcoder.com/stat?
c=problem_statement&pm=6400&rd=10000

=)
/

Marco Gallotta Juggling Bits

http://www.topcoder.com/stat?c=problem_statement&pm=6725&rd=10100
http://www.topcoder.com/stat?c=problem_statement&pm=6725&rd=10100
http://www.topcoder.com/stat?c=problem_statement&pm=6095&rd=9917
http://www.topcoder.com/stat?c=problem_statement&pm=6095&rd=9917
http://www.topcoder.com/stat?c=problem_statement&pm=6475&rd=9988
http://www.topcoder.com/stat?c=problem_statement&pm=6475&rd=9988
http://www.topcoder.com/stat?c=problem_statement&pm=6400&rd=10000
http://www.topcoder.com/stat?c=problem_statement&pm=6400&rd=10000

Sample Problems

Questions

Marco Gallotta Juggling Bits

	Introduction
	Sets
	Bit Tricks
	Bitset
	Sample Problems

