
Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Juggling Bits

Marco Gallotta

28 February, 2009

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Introduction

Most useful optimisations are high-level
Bit manipulation is one of the most effective low-level
optimisations
Potential order-of-magnitude improvement in speed and
size
Can simplify code

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Outline

1 Introduction

2 Sets

3 Bit Tricks

4 Bitset

5 Sample Problems

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Truth Table

Truth table for ! (not), && (and), || (or) and ^ (xor):

A B !A A && B A || B A ^B
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Bit-wise operations do the same, but operate on each bit
separately
If A is 1100 and B is 1001, then:

~A = 11110011 (assuming A is one byte)
A & B = 1000
A | B = 1101
A ^B = 0101

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Truth Table

Truth table for ! (not), && (and), || (or) and ^ (xor):

A B !A A && B A || B A ^B
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Bit-wise operations do the same, but operate on each bit
separately
If A is 1100 and B is 1001, then:

~A = 11110011 (assuming A is one byte)
A & B = 1000
A | B = 1101
A ^B = 0101

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Shift Operators

Two more operators: A « B and A » B

Shift all bits in A and shifts them B positions to the left («) /
right (»)
Non-negatives are padded with zeros
Equivalent to multiplyication («) / integer division (») by 2B

Most common use is 1 « X, which is a number with only
bit X set

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bit-Sets

We can use an integer to represent a subset of a set of up
to 32 values
A 1 bit represents a member in the subset, a 0 bit a
member that is absent
We have the following simple operations on subsets:

Union A | B Intersection A & B
Subtraction A & ~B Negation ALL_BITS ^A
Set bit A |= 1 « bit Clear bit A &= ~(1 « bit)
Test bit (A & 1 « bit) != 0

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bit-Sets

We can use an integer to represent a subset of a set of up
to 32 values
A 1 bit represents a member in the subset, a 0 bit a
member that is absent
We have the following simple operations on subsets:

Union A | B Intersection A & B
Subtraction A & ~B Negation ALL_BITS ^A
Set bit A |= 1 « bit Clear bit A &= ~(1 « bit)
Test bit (A & 1 « bit) != 0

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

All Subsets

Every N-bit value represents some subset of an N-element
set
Easy to iterate over all subsets
The bit representation of a subset is less than that of the
set
i = (i - 1) & A to iterate to next subset of the subset
A

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

All Subsets

Every N-bit value represents some subset of an N-element
set
Easy to iterate over all subsets
The bit representation of a subset is less than that of the
set
i = (i - 1) & A to iterate to next subset of the subset
A

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Extracting Bits

Value of lowest bit: x & ~(x - 1)

Index of highest/lowest bit: looping requires only two
iterations on average
GCC built-in functions:

__builtin_ctz (count trailing zeros)
__builtin_clz (count leading zeros)
Undefined for zero

Check if number is a power of 2: clear lowest bit and check
if result is 0
__builtin_popcount counts number of bits set

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Extracting Bits

Value of lowest bit: x & ~(x - 1)

Index of highest/lowest bit: looping requires only two
iterations on average
GCC built-in functions:

__builtin_ctz (count trailing zeros)
__builtin_clz (count leading zeros)
Undefined for zero

Check if number is a power of 2: clear lowest bit and check
if result is 0
__builtin_popcount counts number of bits set

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Extracting Bits

Value of lowest bit: x & ~(x - 1)

Index of highest/lowest bit: looping requires only two
iterations on average
GCC built-in functions:

__builtin_ctz (count trailing zeros)
__builtin_clz (count leading zeros)
Undefined for zero

Check if number is a power of 2: clear lowest bit and check
if result is 0
__builtin_popcount counts number of bits set

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Gotchas

Very easy to make mistakes with bits
A « B and A » B use only the last 5 bits of B

Shifting by 32 bits does nothing!

& and | operators have lower precedence than comparison
operators

Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bitset

STL offers a conveniant data structure, bitset<N> in
header bitset
Optimised for space: each element occupies only one bit
Advantages:

Easier than array of integers when more than 64 bits
required
Some handy methods

Disadvantages:
Need to know size in advance: template parameter N
No iterators: ++ and --

Operators: &, |, ^, «, » and their &= equivalents
Operators: ~, ==, != and [] to access a bit
Methods: set, flip, any, none, to_ulong
Documentation:
http://www.sgi.com/tech/stl/bitset.html

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bitset

STL offers a conveniant data structure, bitset<N> in
header bitset
Optimised for space: each element occupies only one bit
Advantages:

Easier than array of integers when more than 64 bits
required
Some handy methods

Disadvantages:
Need to know size in advance: template parameter N
No iterators: ++ and --

Operators: &, |, ^, «, » and their &= equivalents
Operators: ~, ==, != and [] to access a bit
Methods: set, flip, any, none, to_ulong
Documentation:
http://www.sgi.com/tech/stl/bitset.html

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bitset

STL offers a conveniant data structure, bitset<N> in
header bitset
Optimised for space: each element occupies only one bit
Advantages:

Easier than array of integers when more than 64 bits
required
Some handy methods

Disadvantages:
Need to know size in advance: template parameter N
No iterators: ++ and --

Operators: &, |, ^, «, » and their &= equivalents
Operators: ~, ==, != and [] to access a bit
Methods: set, flip, any, none, to_ulong
Documentation:
http://www.sgi.com/tech/stl/bitset.html

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Bitset

STL offers a conveniant data structure, bitset<N> in
header bitset
Optimised for space: each element occupies only one bit
Advantages:

Easier than array of integers when more than 64 bits
required
Some handy methods

Disadvantages:
Need to know size in advance: template parameter N
No iterators: ++ and --

Operators: &, |, ^, «, » and their &= equivalents
Operators: ~, ==, != and [] to access a bit
Methods: set, flip, any, none, to_ulong
Documentation:
http://www.sgi.com/tech/stl/bitset.html

Marco Gallotta Juggling Bits

http://www.sgi.com/tech/stl/bitset.html

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Example

#include < b i t s e t >
#include <iostream >
using namespace std ;
i n t main () {

b i t s e t <8> a(100 u l) , b (s t r i n g (" 1001110 ")) ;
cout << a << " " << b << endl ;
cout << (a&b) << " " << (a | b) << " " << (a^b)

<< endl ;
a [0] = 1 ; cout << a << endl ;

}

produces:

01100100 01001110
01000100 01101110 00101010
01100101 Marco Gallotta Juggling Bits

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Sample Problems

Bit-sets and bit count: http://www.topcoder.com/
stat?c=problem_statement&pm=6725&rd=10100

All subsets: http://www.topcoder.com/stat?c=
problem_statement&pm=6095&rd=9917

Bit-sets with trick iteration:
http://www.topcoder.com/stat?c=problem_
statement&pm=6475&rd=9988

No adjacent bits: http://www.topcoder.com/stat?
c=problem_statement&pm=6400&rd=10000

Marco Gallotta Juggling Bits

http://www.topcoder.com/stat?c=problem_statement&pm=6725&rd=10100
http://www.topcoder.com/stat?c=problem_statement&pm=6725&rd=10100
http://www.topcoder.com/stat?c=problem_statement&pm=6095&rd=9917
http://www.topcoder.com/stat?c=problem_statement&pm=6095&rd=9917
http://www.topcoder.com/stat?c=problem_statement&pm=6475&rd=9988
http://www.topcoder.com/stat?c=problem_statement&pm=6475&rd=9988
http://www.topcoder.com/stat?c=problem_statement&pm=6400&rd=10000
http://www.topcoder.com/stat?c=problem_statement&pm=6400&rd=10000

Introduction
Sets

Bit Tricks
Bitset

Sample Problems

Questions

?

Marco Gallotta Juggling Bits

	Introduction
	Sets
	Bit Tricks
	Bitset
	Sample Problems

